Real Analysis 20-10-09.
Review
• Outer measure
$$(\mu(\phi)=0, \mu(A) \leq \sum_{i=1}^{\infty} \mu(A_i))$$
 if
 $A \equiv \bigcup_{i=1}^{\infty} A_i$
• (Caratheodory's Thm) Let μ be an outer measure
on X.
Then (X, M_c, μ) is a measure space,
where $M_c = \{E \in X : E \text{ is } \mu \text{-measurable } \}$
§ 2.2 Topological and metric spaces.
• Topological spaces
• Metric spaces.
Prop. 2.3 Let (X, M, μ) be a measure space,
where X is a topological space and assume that
 $M \supseteq \beta_X$ (where β_X is the Borel S-algebra
 $On X$)

Then any continuous function
$$f: X \rightarrow \mathbb{R}$$
 (or \mathbb{R})
is M-measurable.
Pf. \forall open $G \subset \mathbb{R}$ (or \mathbb{R}), by contrinuity,
 $f^{-1}(G)$ is open in X
hence $f^{-1}(G) \in \mathcal{B}_X \subset M$. \square .

Def. (Borel measure)

Prop 2.4 (Caratheodory's criterion)
Let
$$(X, d)$$
 be a metric space. Let μ be
an outer measure on X . Suppose that μ satisfies
 $(*)$ $\mu(A \cup B) = \mu(A) + \mu(B)$ if $d(A, B) > 0$,
where $d(A, B) = \inf \{ d(x, y) : x \in A, y \in B \}$.

(An outer measure
$$\mu$$
 satisfying (*) is called a metric
outer measure)
Then μ is a Bord measure.

Proof. It suffices to show that all closed sets
in X are μ -measurable.

Let A be a closed set. We need to show
 $\mu(C) \ge \mu(C \cap A) + \mu(C \setminus A), \ \forall \ C \subseteq X.$
For n \in IN, define
 $A_n = \{x \in X: d(x, A) \le \frac{1}{n}\},\$
where $d(x, A) := \inf \{d(x, y): \forall \in A\}.$
Then An are closed, An $\lor A$.

Notice that $d(A, A_n^C) \ge \frac{1}{n}$. So
 $d(C \cap A, C \setminus A_n) \ge \frac{1}{n}$.

Hence $\mu(C) \ge \mu((C \cap A) \cup (C \setminus A_n))$
 $= \mu(C \cap A) + \mu(C \setminus A_n), \ \forall n$.

Next we show that

$$(**) \qquad \lim_{n \to \infty} \mu(C \setminus A_n) \ge \mu(C \setminus A),$$
which implies $\mu(C) \ge \mu(CnA) + \mu(C \setminus A).$
To prove (**), define for $R \in N$,
 $R_R = \{x \in X : \frac{1}{1+K} \cdot d(x, A) \le \frac{1}{K}\}.$
Then
 $A_n = A \cup (\bigcup_{k=n}^{\infty} R_n)$ with Union
being diajoint.
An
 A_n
Then $A^c = A_n^c \cup (A_n \setminus A)$

So

$$C \setminus A = (C \setminus A_{n}) \cup (cn(A_{n} \setminus A))$$

$$= (C \setminus A_{n}) \cup (Cn(\bigcup_{k=n}^{\infty} R_{k})).$$
Hence

$$\mu(C \setminus A) \leq \mu(C \setminus A_{n}) + \mu(Cn(\bigcup_{k=n}^{\infty} R_{k})).$$
To show that $\lim_{n \to \infty} \mu(C \setminus A_{n}) \geq \mu(C \setminus A)$,
it is enough to show

$$\sum_{k=1}^{\infty} \mu(CnR_{k}) < \infty$$

$$R=1$$
(which implies $\mu(Cn(\bigcup_{k=n}^{\infty} R_{k}) \rightarrow 0 \text{ as } n \rightarrow \infty)$)
Notice that $R_{2}, R_{4}, \dots, R_{2k}, \dots$ have positive
distance between them,

So are R1, R3, R5, ... Hence μ(c) $\geq \mu(cnR_2) \cup (cnR_4) \cup \cdots (cnR_{2K})$ $\mu(cnR_{2}) + \mu(cnR_{4}) \cup \cdots \cup (cnR_{2K}))$ $= \mu(CnR_{2}) + \dots + \mu(CnR_{2k}).$ Hence $\sum_{k=1}^{\infty} \mu(\operatorname{Cn} R_{2k}) \leq \mu(\operatorname{C}) < \infty.$ Similarly $\sum_{k=1}^{\infty} \mu(C \cap R_{2k-1}) \leq \mu(C) < \infty$ Therefore $\sum_{k=1}^{\infty} \mu(C \cap R_{k}) \leq \frac{1}{2} \mu(C) < \infty$ (7) TA)

$$\frac{Remark}{R} : R^{n} \text{ is a LCHS.}$$

$$\cdot \text{ All compact metric spaces}$$

$$are \ LCHS.$$

$$Prop 2.5. \ Let \ X \ be \ a \ LCHS.$$

$$Let \ K \ \subseteq \ G \ where \ K \ is \ compact,$$

$$G \ is \ open \ in \ X.$$

$$Then \ \exists \ open \ V \ such \ that$$

$$K \ \subseteq \ V \ \subseteq \ V \ \subseteq \ G.$$

Thm 2.6 (Urysohn's lemma).
Let X be a LCHS.
Let K
$$\subset$$
 G, K compact, G open.
Then there exists a cts f: X \rightarrow IR such that
 \cdot supp(f) \subset G
 \cdot 0 \leq f \leq 1 on X
 \cdot f(x) = 1 for all $\times \in K$
where
 $supp(f) = \{ \times : f(x) \neq o \}$.
Thm 2.7 (partition of Unity).
Let X be a LCHS.
 $suppose K \subset \bigcup_{k=1}^{N} G_{k}$, with G_{k} open
where K is compact.

There exist
$$\{P_j\}_{j=1}^{N} \subset C(X)$$
,
such that
 $P_j < G_j$ and $\sum_{j=1}^{N} P_{j} = 1$ on K
where $P_j < G_j$ means that
 $() \text{ supp}(P_j) \subset G_j$; and
 $() \circ < P_j < 1$ on X.
 $\{ 2 \cdot 4 \ \text{Riesz representation Thm.}$
 $\{ 5 \cdot 4 \ \text{Riesz representation Thm.}$
 $\{ 6 \cdot 6 \ \text{C}(X) = \{ f \in C(X) := \text{ supp}(f) \text{ is compact} \}$.
 $(x - 1) C_c(X) = \{ f \in C(X) := \text{ supp}(f) \text{ is compact} \}$.
 $(x - 1) C_c(X) \text{ is a Vector space.}$
 $(x - 1) C_c(X) \text{ is a Vector space.}$
 $(x - 1) C_c(X) \text{ is a Vector space.}$
 $(x - 1) C_c(X) \text{ is a Vector space.}$
 $(x - 1) C_c(X) \text{ is a Vector space.}$
 $(x - 1) C_c(X) \text{ is a Vector space.}$
 $(x - 1) C_c(X) \text{ is a Vector space.}$
 $(x - 1) C_c(X) \text{ is a Vector space.}$
 $(x - 1) C_c(X) \text{ is a Vector space.}$
 $(x - 1) C_c(X) \text{ is a Vector space.}$
 $(x - 1) C_c(X) \text{ is a Vector space.}$
 $(x - 1) C_c(X) \text{ is a Vector space.}$
 $(x - 1) C_c(X) \text{ is a Vector space.}$
 $(x - 1) C_c(X) \text{ is a Vector space.}$
 $(x - 1) C_c(X) \text{ is a Vector space.}$
 $(x - 1) C_c(X) \text{ is a Vector space.}$
 $(x - 1) C_c(X) \text{ is a Vector space.}$
 $(x - 1) C_c(X) \text{ is a Vector space.}$
 $(x - 1) C_c(X) \text{ is a Vector space.}$
 $(x - 1) C_c(X) \text{ is a Vector space.}$

Then
$$\Lambda$$
 is a positive linear functional
on $Cc(X)$.
Justification: It is easy to show the positivity and linearity of Λ .
Below we show that $\Lambda(f) \in \mathbb{R}$ for $f \in C_c(X)$.
Let $f \in C_c(X)$ and $K = \text{supp}(f)$.
Then K is compact.
Hence
 $\sup[f\alpha] = \sup[f(x)] < \infty$.
 $x \in X$ $x \in K$
It follows that
 $\int_{X} f d\mu = \int_{K} f d\mu$.
 $x \in K$
and $|\int_{K} f d\mu| \leq \int_{K} |f| d\mu$
 $\leq \mu(K) \cdot \sup_{X \in K} |f\alpha|$
 $\leq \omega$.

The 2.8 (Riesz representation Thm)
Let X be a LCHS. Let
$$\Lambda$$
 be
a positive linear functional on $C_c(X)$.
Then \exists a Bonel measure μ on X such that
 μ is finite on every compact set, and
 $\Lambda(f) = \int f d\mu$, \forall $f \in C_c(X)$.
• Before the proof, we construct a measure μ from Λ .
Let $G \subset X$ be non-empty and Open. We define
 $\mu_o(G) = \sup \{ \Lambda(f) : f < G \}$.
(Recall $f < G$ means $f \in C_c(X)$, $o \le f \le 1$, $\sup Rf) \subset G$.
By Urysohn Lem, \exists $f \in C_c(X)$ such that $f < G$.

Now for any
$$E = X$$
, define
 $\mu(E) = \inf \{ \mu_0(G) : G \text{ is open, } G \supseteq E \}.$
Proof of Riesz representation Thm (Thm 28):
First observe that
 $\mu_0(G_1) \leq \mu_0(G_2)$ for open set G_1, G_2
 w_1 th $G_1 = G_2.$
As a direct consequence, we have
(i) $\mu(G) = \mu_0(G)$ for open $G = X$.
(ii) $\mu(E_1) \leq \mu(E_2)$ if $E_1 = E_2.$
Next we prove the theorem in 4 steps.
 \oplus μ is an outer measure.
 (i) $\mu(K) < \infty$ for compact K.

•
$$\Lambda(f) = \int f d\mu, f \in C_c(\chi)$$

Step 1. μ is an outer measure.
We need to show that
 $\mu(E) \leq \sum_{j=1}^{\infty} \mu(E_j)$ if $E \subset \bigcup_{j=1}^{\infty} E_j$.
We may assume $\sum_{j=1}^{\infty} \mu(E_j) < \infty$.
Let $E > 0$. Pick open $G_j > E_j$ such that
 $\mu(E_j) > \mu_0(G_j) - \frac{\varepsilon}{2^j}, j = 1, 2, \cdots$
Set $G = \bigcup_{j=1}^{\infty} G_j$. Then G is open.
Now we estimate $\mu_0(G)$. Let $f < G$.
Let $K = \text{supp}(f)$. Then K is compact.
Since $K \subset G = \bigcup_{j=1}^{\infty} G_j$, by Compactness
of K .

$$\exists N \text{ such that} \\ K \sqsubseteq \bigcup_{j=1}^{N} G_j^{:}. \\ \text{Then by the theorem of partition of Unity,} \\ \exists \varphi_j < G_j^{:} \text{ such that} \\ \sum_{j=1}^{N} \varphi_j^{:} = 1 \text{ on } K. \\ \underbrace{\sum_{j=1}^{N} \varphi_j^{:} = 1 \text{ on } K.}_{j=1} \\ \text{We obtain that} \\ f = \sum_{j=1}^{N} f \cdot \varphi_j^{:} \text{ on } X. \\ \text{Hence} \\ \Lambda(f) = \sum_{j=1}^{N} \Lambda(f \varphi_j) \\ \leq \sum_{j=1}^{N} \mu_o(G_j) \text{ (since } f \varphi_j < G_j) \\ \leq \sum_{j=1}^{N} \mu_o(G_j). \\ \end{cases}$$